AXIALLY SYMMETRIC PROBLEM OF THE NONLINEAR THEORY
CF ELASTICITY POR AN INCOMPRESSIBLE MEDIUM

(OSRSIMMETRICHMATA ZABACHA NELINEINOL TEORII
UPAUGOSTI DLIA NESSHINAMMOI SRIDY)

PMM Vol.28, ® 3, 1964, pp. 597-600

A.M, BOGORODITSKII
{Tula)

{Received October 30, 1963)

1. We consider the axially symmetric strains in a body of rotation., We
denote the cylindrical coordinates of points in the body in the initial state
by XA (A =1,2,3) , where x' is taken along the axis of rotatiocn, x® is
the distance of points {rom the axis, and X® is a polar angle.

The position of points in the deformed body will be determined by the
expanded coordinates x' (¢ = 1, 2, 3} in the same cylindrical coordinate
system,

In the notation for tensor components, capital latin letters will corre-
spond to the original coordinates and small letters to the expanded coordi-
nates., A covarlant original derivative of the tensor 7:: 1s denoted by
coordinate indices after the comma 7T::,, ; for an expanded derivative the
same indices used but with small letters, as T::,, , Displacements of the
body points during deformation are denoted by [, I® in the original coor-
dinates, corresponding to X' and X* ; displacements I© perpendicular to
the plane of the meridian are taken equal to zero. Thus, for the problem
consldered, the contravariant components of the vector of the medium displace-
ment are represented by functions of the two parameters

Ut = U (X3, X%, U2 = U (X3 X?) (11

It is shown here that the incompressibllity condition for the medium gives
the possibility of expressing the unknown functions (1.1) by a certain func-
tion of two parameters (called here the displacement function), and of redu-
cing the solution of the axially symmetric problem of the nonlinear theory
of elasticity to the problem of finding a single function satisfying the
equations of equilibrium and the boundary conditions.

2., Let g,p be the curvilinear coordinates in the plane x', r* . Let
wla,B) be a function having continuous derivatives up to the fourth order
incl., and which satisfies condition

A=1— 0,5+ 008 0, — B, <B 2.1

The Greek indlices denote partial derivatlives of w
The incompressibility condition for the medium [ 17

=184+ U4 Bi=1 2.2)
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1s presented in the form
ot au? AUt AUt U?
[(1 +577) (1 + 57%) — 31 aXI](1'+T=T)=1 @.3)

We shall seek a solution of the incompletely defined differential equation
(2.3) in the form of a family of functions of the two parameters. We proceed
by a change of variables

o+ x3) (U + X9
2

z=U'+ X1, w = (2.4)
which gives Equation (2.3) 1in the form
0z ow 0z Ow 1
(aXl X%~ 3x° aXI)F =1 (2.5)

and we present [2] the solution of (2.5) with the aild of two functions p(q,g),
¢(a,p) in the form

Xy=a+ P, X*=V2@+ Q, z=a—P, w=[3—Q (2.6)
By substitution of (2.6) into (2.5) we obtain Equation

P,+ Q=0 2.7)
From this we have
P = mp (a’ B)! Q = — (‘)ﬂ (Cl, B) 2.8)
Here w(a 8) 1s an arbitrary function having continuous derivatives of
the first and second order.
The assumption 1s made that

A=(+P)(+ Q) —PQy 0 2.9)

Consequently, the solution of differential equation (2.3) may te given 1in
the form of Formulas
Ul = — 20, UP=V2@+ o) — V2B — oy (2.10)
Xl=a+o0; X:=V2B— 0y
Thus, the unknown displacements ¢* and [® are expressed as derivatives
of a single function uw(a g) of the two parameters.
We note that the representation (2.10) of the medium remains spatially
Euclidean.

3. The compatibility condltions for strailn in the axisymmetric problem
may be obtained in a simpler form without having recourse to the curvature
tensor of the medium.

If the displacements in the medium are contilnuous, then

9 aUuA o oUA

3XT X%~ 9X% 9XT “1=12 @1

and for compatibility of strain it 1s sufficient to require that the angle
of rotation of any fiber in the meridlonal plane also be continuous. We
obtain the continulty condition for the angles of rotation of the filbers.

As 1s well known [3], the components g 1in the expansion
ayp=0g1s" + Bgoa @.2)
of the covarlant derivative of the vector field g on the surface determlne

the transverse vector of the field by vectors of the given field and by an
additional field.
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Besides, the transverse vectors of two fields differ by the gradlent of
the angle between the vectors of these fields [3], 1.e.

99
axk

Here 7Yp and ap are the covariant coordinates of the transverse vectors
of the flelds; ¢ 1s the angle between the vectors of the two fields.

By using this property and by choice of the second covariant derivative
of the angle g , we obtain the continuity condition for rotation in the form

Tg = 0 + (3.3)

T[B, A1 a[B.A} =0 (34)

if v and ap are transverse vectors of certain material fibers, lylng in
the meridicnal’plane before and after deformation, respectively. The cholce
of the tensor is shown by square brackets

rap1 ™ Yalag g — ap, 4l

Thus, for compatibility of axisymmetric strain, 1% is necessary and suf-
ficient that (3.1) and {3.4) be satisfled identically.

4, For a given function w(q,8) each system of displacements corresponds
to a certaln stress fleld if only the stress — strain relations are known.

But such a stress field will not, generally speaking, satisfy the equi-
1ibrium conditions for an element of the medlium, nor the boundary conditions.

The equilibrium conditions for an element of the medium are isolated from
the geometrically assumed, statically possible strain systems given by
wla,p), which determine the stress — strain relation expressing the mechani-
cal properties of the medium.

Those equations i1solated from the system of geometrically possible strain
systems, satisfying the equilibrium equations of the medium with a certain
potential strain energy density I, we call the equations of compatibility
of stress and strain. 7The equations of compatibility for isotropic materials
will be obtained here. It should be noted that analogous equations of com-
patibility may also be obtained for other types of incompressible materials.

The equations of equilibrium in an arbltrary spatial curvilinear coordi-
nate system have the form [4]

t"’i’j +pf=0

¥
i _ i3 o 0% i 3 M C = cr..(;i x] M :r,‘i — ""‘3:— (4.1}
1= prg +2 (’)CAB T AT g AR T cijt JAY B A aAYA

Here ¢!! are the components of the stress tensor, p 1s the density of
the deformed medium, f, are the components of the body forces, p 1s a
Lagranglian multiplier, ({AB are the components of the Green tensor, and the

8ij are the components of the spatial metric tensor.
For an isotropic material [1 and 4]

T = 2, T (Ji=C%% Jo="1 [V — cA5C%,]) (4.2)

Here J, and J, are the basic invariants of the Green tensor We intro-~
duce the tensor [4

@y = cAPat

where GAB are the components of the material metric tensor.

Passing from the x2 and &' coordinates to the convective coordinate
system,

A =a, 222=0f =2%=X" (4.3)
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the stress tensor (4.1) is represented in the Green-Zerna form for an iso-
tropic medium [4 and 5] as

is i a4y .. X . ; .

ti=— pgi -+ 257, 67 + 257 (J16Y — G¥g, GY) (4.4)

For the axlally symmetric problem in the absence of body forces the equi-

%ibrium condition in the convective coordinate system may be written in the
orm

; az az ; .
@) =237, P+ 2 57 i 64816 | (i=1,2 (45

di

Here
®,,2 Wpq (1 maﬁ)
Gn=U+o0l+3g_gy.  Ce=U+oplen—"37"5 "
(1 —oy,)°
Gn=op’+aE—oy Ce=IB—0) Gu=0 Gw=0
Oyq° Oy -+ maﬁ)
an = (1 — o)+ 5 g — — B R .
m=U—opitrgroy. =0 -t ETS)
, | (45
2= O+ TR Lo gs=2B+w), gi8=0, gu=0

Upon calculating the second covariant derivative of the scalar function
p , we obtain the conditlon of compatibility of stress and strain for an
isotropic medium with an energy density = = £{(Js,, Js)

(K6¥gyy + L0167 — g6 = ( o3 o3 ) ew
{4.6

= K G*g, + L (167 g,y — C™g,00,6] 5, 91 ok

Only the displacement function wf{a,p) and constants characterizing the
mechanical groperties of the medium enter into Equation (4.6). Thus, by
solving (4.6) we find w(a,8) and isolate from the combinations of strains

those systems which satlsfy the equilibrium conditions for an element of the,
medium,

&, The exposition permits setting up a way of solving axlally symmetric
problems, Equation (4.6), when integrated, determines a system of displace-
ment functions w{a,B) compatible with the equilibrium conditions for an
element of the medium for a given physical law of relation between stresses
and strains.

For this w{a,B) system, p may be found from {4.5) since the system
(4.5) 1s completely integrable. Thus the components ¢! of the stress ten-
sor are determined.

It remains to satisfy the boundary conditions. Evidently the edge condi-
tions, with displacements given on the boundary, may be satisfled in a pre-
liminary way by a choice of w(a,B) 1in the corresponding form. Thus there
remain the edge conditions in the form

(5.1)

where n, are the components of the unit vector of the external normal to
the bounéing surface of the deformed medium, and £, are the components of
the external force in respect to unit area of the same surface.

The author expresses his deep thanks to L.A.Tolokonnikov for hls interest
and help with this paper.
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The problem considered in [1] belongs to a class of problems studied in [2].
It is shown there, that the assumption of monotonic behavior of m(v) , on
which is based the unique optimum control with not more than two switchings,
i1s satisfied for the realistic drag laws

n

D=AV2+B—V%T2 (n=2 or n=23},)

Other aspects of the problem may be found in [3 and LY
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