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1, We consider the axially symmetric atralns in a body of rotation. We 
denote the Cylindrical coordinates of points in the body in the lnltlal state 
by XA (A = 1, 2, 3) , where X1 is taken along the axis of rotation, ,F is 
the distance of Points from the axla, and p la a polar angle. 

‘Ihe POSitiOn of Point8 in the deformed body will be determined by the 
expanded coordinates xS (t - 1, 2, 3) In the same cylindrical coordinate 
eyatem. 

fn the notation for tensor components, capital Latin letters will corre- 
spond to the orlgtnal coordinates and small letters to the expancted coordl- 
natea. A covarlant original derivative of the tensor 1’:: la denoted by 
coordinate lndlcea after the comma p: :,* ; for an expanded derivative the 
same indices ueed but with small lettera, a8 T::,, Displacements of the 
body points during deformatfon are denoted by ll’, u” in the original coor- 
dinates, corresponding to x’ and ,? ; displacements a’ perpendicular to 
the plane of the meridian are t8ken equal to zero. Thus, for the problem 
considered, the contravarlant conpcnenta of the vector of the medium dlsplace- 
ment are represented by functions of the two parameters 

U” = U’ (Xl, X2), W” = u= (Xl, X2) (1 1) 

It Is shown here that the lncompresslbllity condition for the medium gives 
the poeelbllity of expressing the unknown functions (1.2) by a certain func- 
tion of two parameters (called here the dlsplaoement function), and of redu- 
cing the solution of the axially symmetric problem of the nonline8r theory 
of elaatlclty to the problem of finding a single SIWtiOn 88tiSfYli'ig the 
equations of equilibrium and the boundary conditions. 

2, Let 0,s be the curvilinear coordinates in the plane X1, f . I& 
m(a,e) be a function having continuous derivatives up to the fourth order 
lncl . , and which aetisfiee condition 

A= 1-~,;4+y&$#O, - p,<%<P (2.~1 

The areek indices denote partial derlvatiwes of UJ 

The ~compre~aibl~lty condition for the medium [lr 

I=\6AB+UA,Bj=i (2.2) 
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Is presented In the form 

[(i+$)(i+gi) -g g](l.++ (2.3) 

We shall seek a solution of the incompletely defined differential equation 
(2.3) In the form of a family of functions of the two parameters. We proceed 
by a change of variables 

z = U’ + Xl, w =w2+ X2) (u-J+ X2) 
2 (2.4) 

which gives Equation (2.3) In the form 

( 
az aw az aw 1 
----wmXa=i ax1 ax2 1 (2.5) 

and we present [2] the solution of (2.5) with the aid of two functions p(a,e), 
Q(~,B) In the form 

X, = a+ P, X2 = v2 (P + Q), z=a-P, w=/3-Q (2.6) 

By substitution of (2.6) Into (2.5) we obtain Equation 

P, + Qp = 0 (2.7) 
From this we have 

p = up (a, P), Q = - up (a, P) (2.8) 

Here UJ(~ a) Is an arbitrary function havll?g continuous derivatives of 
the first and second order. 

The assumption Is made that 

A=(i+P,)(i+ Qp)-PpQa=kO (2.9) 

Consequently, the solution of differential equation (2.3) may be given In 
the form of Formulas 

U'= - 29, U2 = v2 (F + qJ - v2 (P - qJ 

X1=a+up, x2 = 1/2 (p - ma) 

(2.10) 

Thus, the unknown displacements II1 and d are expressed as derivatives 
of a single function ~(a. 8) of the two parameters. 

We note that the representation (2.10) of the medium remains spatially 
Euclidean. 

3. The compatibility conditions for strain in the axlsymmetrlc problem 
may be obtained In a simpler form without having recourse to the curvature 
tensor of the medium. 

If the displacements In the medium are continuous, then 

a auA a auA ---=-_ 
ax1 ax2 ax2 ax1 

(A = 1, 2) (3.1) 

and for compatlblllty of strain It is sufficient to require that the angle 
of rotation of any fiber In the meridional plane also be continuous. We 
obtain the continuity condition for the angles of rotation of the fibers. 

As Is well known [3], the components aB In the expansion 

a A.H = (IBaA + PtiA (3.2) 

of the covarlant derivative of the vector field a on the surface determine 
the transverse vector of the field by vectors of the given field and by an 
addltlonal field. 
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Besides, the transverse vectors of two fields differ by the gradient of 
the angle between the vectors of these Fields [3], i.e. 

TB = aB + $ (s.:<) 

Here TB and 
of the fields; 

an are the covariant coordinates of the transverse vectors 
cp Is the angle between the vectora of the two Fields. 

By using this property and by choice of the second oovariant derivative 
oftheangle (P, we obtain the continuity condition For rotation In the Form 

y[B, A] - ‘[,,A] = ” (3.4) 

if TB and are transverse vectors of certain material fibers, lying in 
the merldiona?Bplane before and after deformation, respectively. The choice 
of the tensor is shown by square brackets 

'[A,n]='/Z tr,,, - '11 41 ,. 

Thus, For compatibility of axisymmetric strain, it is necessary and suf- 
ficient that (3.1) and (3.4) be satisfied identically. 

4, For a given function m(a,g) each system of displacements corresponds 
to a certain stress field IF only the stress - strain relations are known. 

But such a stress field will not, generally speaking, satisfy the equi- 
librium conditions for an element of the medium, nor the boundary conditions. 

The equilibrium conditions For an element of the medium are isolated From 
the geometrically assumed, statically possible strain systems given by 
w(a,~), which determine the stress - strain relation expressing the mechani- 
cal properties of the medium. 

Those equations Isolated From the system of geometrically possible strain 
systems, satisfying the equilibrium equations of the medium with a certain 
potential strain energy density 2, we call the equations of compatibility 
of stress and strain. The equations of compatibility For isotropic materials 
will be obtained here, It should be noted that analogous equations of com- 
patibility may also be obtained For other types of incompressible materials. 

The equations of equilibrium In an arbitrary spatial Curvilinear coordi- 
nate system have the form [4] 

tji,j -I- i,fi = 0 

( 

. . ac . 
t21 = - pg’? + 2aC,, “i,A 21’,; C,,= ~~j~c’,~~x3,~; ,&.i a2 . . _ -. - 

A - axA 1 
(4.1) 

Here t'J are the components of the stress tensor, p is the density of 
the deformed medium, I, are the components of the body forces, p Is a 
Lagrangian multiplier, cAB are the components of the Green tensor, and the 

gij are the components of the spatial metric tensor. 

For an, isotropic material [l and 43 

I: = I:(Jl,J,) (J1 = CA,, J4 =m I/* [J13 - c”, c”,]) (4.2) 

duc?rtEe &Ii% [is 
ape the basic Invariants of the Green tensor We intro- 

fc-Ijij 111 @':2 ,.P& 

where G,, are the components of the material metric tensor. 

Passing from the XA and xi coordinates to the convective coordinate 
system, 

21 = a, z2= p, $ = x3 =; 1s (4.3) 
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the stress tensor (4.1) is represented in the Green-Zerna form for an lso- 
tropic medium 14 and 55 as 

tii = _ (4.4) 

For the axially symmetric problem in the absence of body forces the equl- 
llbrium condition in the convective coordinate system may be written in the 
form 

(p8i) ,j = [2g pgki + 2 $- (JIGjkgki- GnkgnGklG’j) _ ,j 1 (’ = i, 2) (4.5) 
Here 

Giz = (1 + @ap) app - 
?I,(* -%p' 

2 (p _ w,l 

Upon calculating the second covarlant derivative of the scalar function 
p , we obtain the condition of compatibility of stress and strain for an 
isotropic medium with an energy density C - X(.,7,, Jp) 

( KGjkgk, t L (JlGj~gkl - G"kg,,gk~Gzjf ],jz = 

- (h%jkgk2 + L (J1dkgk2 - G""g,,,g,, G'j)] 
.I1 

i)nly the displacement function ~(a,@) and constants characterlzlng the 
mechanical 
solving (4. g 

ropertles of the medium enter Into Equation (4.6). Thus, by 
) we find ~(o,e) and isolate from the combinations of strains 

those systems which setisfy the equillbrlum conditions for an element of the. 
medium. 

5. The exposition permits setting up a way of solving axially symmetric 
problems. Equation (4.6), when integrated, determines a system of dlsplace- 
ment functions w(~,B) compatible with the equilibrium condlr;lons for an 
element of the medium for a given physical law of relation between stresses 
and stralns. 

For this ~(a,@) system, 
(4.5) Is completely integrable: 

may be found from (4.5) since the system 
Thus the components t's of the stress ten- 

sor are determined. 

It remains to satisfy the boundary conditions. Evidently the edge condl- 
tions, with displacements given on the boundary , may be satisfied In a pre- 
liminary way by a choice of ~(u,g) in the corresponding form. Thus there 
remain tt!a edge conditions in the form 

tj nj -_ ti (5.0 

where are the components of the unit vector of the external normal to 
the boukng surface of the deformed medium, and t, are the components of 
the external force in respect to unit area of. the same Surface. 

The author expresses his deep thanks to L.A.Tolokonnlkov for his Interest 
and help with this paper. 
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The problem considered In [l] belongs to a class of 
It Is shown there, that the assumption of monotonic 

problems studied. in [ 21. 
behavior of m(V) , on 

which Is based the unique optimum control wlth not more than two swltchlngs, 
Is satisfied for the realistic drag laws 

(n = 2 or n = 3/2) 

Other aspects of the problem may be found In [3 and 43. 
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